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Abstract

The analytical method using transfer function or impulse response is very effective for analyzing non-
linear systems with localized non-linearities. This is because the number of non-linear equations can be
reduced to that of the equations with respect to points connected with the non-linear element. In the present
paper, analytical method for the steady state vibration of non-linear system including subharmonic
vibration is proposed by utilizing convolution integral and the impulse response. The Galerkin method is
introduced to solve the non-linear equations formulated by the convolution integral, and then the steady
state vibration is obtained. An advantage of the present method is that stability or instability of the steady
state vibration can be discriminated by the transient analysis from convolution integral. The three-degree-
of-freedom mass–spring system is shown as a numerical example and the proposed method is verified by
comparing with the result by Runge–Kutta–Gill method.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Non-linearities often exist at supported and connected points of mechanical structure, which
are usually modelled by non-linear springs. However, their number is usually much smaller than
that of the linear elements. For such systems, the analytical method using transfer function or
impulse response is effective because the number of non-linear equations can be reduced to that of
the equations with respect to points connected and supported with the non-linear elements, hence
the scale of the non-linear analysis becomes small regardless of the number of degree-of-freedom

*Corresponding author.

E-mail address: iwata@t.kanazawa-u.ac.jp (Y. Iwata).

0022-460X/03/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0022-460X(02)01030-1



of the system. In addition, when the transfer function or the impulse response is obtained for the
existing system, the system damping can be easily modelled.

Vibration analyses have been reported using transfer function or the impulse response for such
systems with localized non-linearities. Hagedorn et al. [1] showed that the transient vibration of
such a system could be calculated by convolution integral with linear impulse response and non-
linear restoring force. Chiang and Noah [2] proposed the nonlinear substructure synthetic method
by use of convolution integral and transition matrix [3] and analyzed the transient vibration of
rotor-housing system with bearing non-linear characteristics. Ren [4,5] derived non-linear
equation from the transfer function synthesis method with the non-linear connecting force and
obtained the steady state vibration and aperiodic vibration by harmonic balance method. Gordis
and Radwick [6] reported non-linear substructure synthetic method using the non-linear Volterra
integral equation. The non-linear equation for the steady state vibration using transfer function
synthetic method can be commonly solved by the harmonic balance method; however, it is not
always effective for predicting vibration response of the system in a practical manner, because of
disability to discriminate stability and instability of the vibration, which is one of the important
vibration property.

In the present paper, the analytical method using convolution integral is proposed for analyzing
steady state vibration of the system with localized non-linearity including subharmonic vibration.
The method also permits the stability–instability discrimination for the steady state vibration. The
numerical results for fundamental and subharmonic vibration of three-degree-of-freedom system
with localized non-linear spring are illustrated and the proposed method is verified in comparison
with the result of Runge–Kutta–Gill (RKG) method.

2. Analytical method

2.1. System with localized non-linearities

The proposed method in the present study is very effective for the system with localized non-
linearity. In the case of mass–spring system, for example, the non-linear system includes some
masses that are supported at respective points by a non-linear spring as shown in Fig. 1, or masses
that are connected to each other by non-linear spring. In this paper, the suggested method is
applied to the former system for its simplicity. In Fig. 1, mp represents a mass subjected to external
force f ðtÞ; mq a mass supported with non-linear spring and mr a mass of which vibration is being
analyzed. Displacements of mq and mr are represented as x and y; respectively. gðxÞ denotes

Fig. 1. Multi-degree-of-freedom system with localized non-linearity.
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restoring force property of the non-linear spring. f ðtÞ is defined as F sin Kot so that the steady
state vibration including subharmonic vibration of order 1=K can be considered.

2.2. Transient vibration

An outline of the method for transient vibration analysis using convolution integral is described
in this section, which was reported by Hagedorn and Schramm [1] and provides the basis for the
following steady state vibration analysis. When restoring force of the non-linear spring on mq is
regarded as external force, displacement x of mq and displacement y of mr can be determined by
convolution integral as the following Eqs. (1) and (2), respectively,

xðtÞ ¼
Z t

0

hqpðt � tÞf ðtÞ dt�
Z t

0

hqqðt � tÞgfxðtÞg dt; ð1Þ

yðtÞ ¼
Z t

0

hrpðt � tÞf ðtÞ dt�
Z t

0

hrqðt � tÞgfxðtÞg dt; ð2Þ

where habðtÞ (a ¼ q or r; b ¼ p or q) is impulse response of the system without the non-linear spring
gðxÞ and superscripts a and b represent the location of response and excitation, respectively. The
initial displacement and initial velocity of the system are set to zero. Eq. (1) related to mq

represents a non-linear equation with respect to x; on the other hand, Eq. (2) is calculated linearly
for masses which are not supported by non-linear spring, where xðtÞ is already known by the
calculation of Eq. (1). When Eqs. (1) and (2) are expressed in discrete form, they become as
follows:

xn ¼
Xn�1

k¼0

h
qp
n�kfkDt �

Xn�1

k¼0

h
qq
n�kgðxkÞDt; ð3Þ

yn ¼
Xn�1

k¼0

h
rp
n�kfkDt �

Xn�1

k¼0

h
rq
n�kgðxkÞDt: ð4Þ

Dt is a time interval of discretization process, where t ¼ nDt and t ¼ kDt: The subscript in Eqs. (3)
and (4) corresponds to the discretized time steps, where xn denotes displacement at t ¼ nDt; for
example. Eq. (3) is expressed as the following matrix form along with the initial displacement
x0 ¼ 0:

x0

x1

^

xn

8>>><
>>>:

9>>>=
>>>;

¼

h
qp
0 0 ? 0

h
qp
1 h

qp
0 & ^

^ & & 0

hqp
n h

qp
n�1 ? h

qp
0

2
6664

3
7775

f0

f1

^

fn

8>>><
>>>:

9>>>=
>>>;
Dt �

h
qq
0 0 ? 0

h
qq
1 h

qq
0 & ^

^ & & 0

hqq
n h

qq
n�1 ? h

qq
0

2
6664

3
7775

gðx0Þ

gðx1Þ

^

gðxnÞ

8>>><
>>>:

9>>>=
>>>;
Dt: ð5Þ

xn can be calculated from x0;x1;y and xn�1 in Eq. (5), since h
qp
0 ¼ h

qq
0 ¼ 0: Therefore, it is

possible to obtain displacement xn of a mass supported by non-linear spring via forward
substitution procedure increasing n successively. The displacement yn of a mass which is not
supported by the non-linear spring can be easily calculated by substitution of x0; x1;y and xn�1

into Eq. (4).
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2.3. Steady state vibration

The steady state vibration including subharmonic vibration of order 1=K has K times period of
external force. When time history response due to the periodic external force is divided into every
K period, Eq. (5) is rewritten as follows:

x0

x1

^

xn

8>>><
>>>:

9>>>=
>>>;

¼

h
qp
0 0 ? 0

h
qp
1 h

qp
0 & ^

^ & & 0

hqp
n h

qp
n�1 ? h

qp
0

2
6664

3
7775

f

f

^

f

8>>><
>>>:

9>>>=
>>>;
Dt �

h
qq
0 0 ? 0

h
qq
1 h

qq
0 & ^

^ & & 0

hqq
n h

qq
n�1 ? h

qq
0

2
6664

3
7775

gðx0Þ

gðx1Þ

^

gðxnÞ

8>>><
>>>:

9>>>=
>>>;
Dt; ð6Þ

where the subscript shows the order of every K period. When a time interval corresponding to
each K period of the external force is divided into M equal sections, xi and f are expressed as
column vectors which consist of M elements and gðxiÞ a column vector which consists of M

elements of restoring force gðxiÞ

xi ¼

xi�M

xi�Mþ1

^

xðiþ1ÞM�1

8>>><
>>>:

9>>>=
>>>;
; f ¼ F

sin 2pK
0

M

sin 2pK
1

M

^

sin 2pK
M � 1

M

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

; gðxiÞ ¼

gðxi�MÞ

gðxi�Mþ1Þ

^

gðxðiþ1ÞM�1Þ

8>>><
>>>:

9>>>=
>>>;
: ð7Þ

hab
i is M � M matrix which consists of the impulse response hab

j , written as

hab
0 ¼

hab
0 0 ? 0

hab
1 hab

0 & ^

^ & & 0

hab
M�1 hab

M�2 ? hab
0

2
66664

3
77775; hab

i ¼

hab
i�M ? ? hab

i�1ð ÞMþ1

hab
i�Mþ1 hab

i�M & ^

^ & & ^

hab
iþ1ð ÞM�1 hab

iþ1ð ÞM�2 ? hab
i�M

2
66664

3
77775 ðiX1Þ: ð8Þ

xi ði¼ 0; 1;y;nÞ in Eq. (6) are individually different vectors because fxT
0 ; x

T
1 ;y;xT

n g corresponds
to the transient vibration derived from Eq. (5), where (T) denotes transposed matrix. When the
time has sufficiently passed, it is considered that the transient vibration converges to steady state
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vibration. Then Eq. (6) can be rewritten under such condition as follows:

^

^

x

^

x

x

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

& & & & & 0

& & 0 & & ^

& & h
qp
0 0 & ^

& & & h
qp
0 0 ^

& h
qp
i & & h

qp
0 0

& h
qp
iþ1 h

qp
i & & h

qp
0

2
6666666664

3
7777777775

^

^

f

^

f

f

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

Dt

�

& & & & & 0

& & 0 & & ^

& & h
qq
0 0 & ^

& & & h
qq
0 0 ^

& h
qq
i & & h

qq
0 0

& h
qq
iþ1 h

qq
i & & h

qq
0

2
6666666664

3
7777777775

^

^

gðxÞ

^

gðxÞ

gðxÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

Dt; ð9Þ

where x is a vector corresponding to time history response of the steady state vibration. If the
system has damping, the impulse response habðtÞ converges to zero after adequate course of time.
Hence hab

i which consists of the impulse response data is regarded as zero when the subscript is
larger than N; that is, hab

N ¼ hab
Nþ1 ¼ ? ¼ 0: Therefore, the next Eq. (10) can be obtained by

calculating bottom row of Eq. (9)

x ¼ Hqpf �HqqgðxÞ; ð10Þ

where Hab is represented as

Hab ¼
XN�1

i¼0

hab
i Dt: ð11Þ

N is the smallest value of i which satisfies the following relationship:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðiþ1ÞM�1
k¼i�M ðhab

k Þ2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPi�M�1
k¼0 ðhab

k Þ2
q pe: ð12Þ

Eq. (12) signifies that the ratio between the magnitude (square root of the squared sum) at a single
ði þ 1Þth period of the impulse response and the magnitude up to the ith period becomes smaller
than e: Note that N for h

qp
i are different from N for h

qq
i : e ¼ 10�5 is adopted in the following

example. The equation in y; which determines the steady state vibration of mr; is obtained through
the same procedure expressed as follows:

y ¼ Hrpf �HrqgðxÞ: ð13Þ

If Eq. (10) is solved for x; the time history of steady state vibration x is obtained, so that y can be
calculated by substituting x into Eq. (13). However, generally it is difficult to solve such
simultaneous non-linear equations containing M unknowns as Eq. (10). Therefore, the Galerkin
method is adopted in order to acquire a approximate solution, which is explained below.
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When the subharmonic vibration of order 1=K is assumed, the solution of Eq. (10) is expressed
as follows:

x ¼ A1S1 þ B1C1 þ AKSK þ BKCK ; ð14Þ

where S1; C1; SK and CK represent the following vectors, which consist of sine or cosine function
divided into M terms equally

S1 ¼

sin 2p
0

M

sin 2p
1

M

^

sin 2p
M � 1

M

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

; C1 ¼

cos 2p
0

M

cos 2p
1

M

^

cos 2p
M � 1

M

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

;

SK ¼

sin 2pK
0

M

sin 2pK
1

M

^

sin 2pK
M � 1

M

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

; CK ¼

cos 2pK
0

M

cos 2pK
1

M

^

cos 2pK
M � 1

M

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

: ð15Þ

A1 and B1 denote magnitude of the subharmonic component of order 1=K ; and AK and BK

magnitude of the fundamental harmonic component. Hereby, the second equation of Eqs. (7)
yields the expression of f ¼ FSK : Substituting Eq. (14) into Eq. (10) and multiplying ST

1 ; C
T
1 ; S

T
K

and CT
K ; respectively, on each term from its left-hand side, the following equations are

obtained:

M

2
A1 ¼ FST

1H
qpSK � ST

1H
qqgðA1S1 þ B1C1 þ AKSK þ BKCK Þ;

M

2
B1 ¼ FCT

1H
qpSK � CT

1H
qqgðA1S1 þ B1C1 þ AKSK þ BKCK Þ;

M

2
AK ¼ FST

KH
qpSK � ST

KH
qqgðA1S1 þ B1C1 þ AKSK þ BKCK Þ;

M

2
BK ¼ FCT

KH
qpSK � CT

KH
qqgðA1S1 þ B1C1 þ AKSK þ BKCK Þ: ð16Þ

A1; B1; AK and BK can be calculated from Eqs. (16) by the Newton–Raphson method, and the
time history of x can be obtained from Eq. (14). If AK and BK are calculated by Eqs. (16) under
the condition of A1 ¼ B1 ¼ 0; fundamental harmonic solution is obtained.

The solution y of Eq. (13) is also expressed as follows:

y ¼ C1S1 þ D1C1 þ CKSK þ DKCK : ð17Þ
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Substituting Eq. (17) into Eq. (13) and multiplying ST
1 ; C

T
1 ; S

T
K and CT

K ; respectively, on each term
of equation, the following equations are obtained:

M

2
C1 ¼ FST

1H
rpSK � ST

1H
rqgðA1S1 þ B1C1 þ AKSK þ BKCK Þ;

M

2
D1 ¼ FCT

1H
rpSK � CT

1H
rqgðA1S1 þ B1C1 þ AKSK þ BKCK Þ;

M

2
CK ¼ FST

KH
rpSK � ST

KH
rqgðA1S1 þ B1C1 þ AKSK þ BKCK Þ;

M

2
DK ¼ FCT

KH
rpSK � CT

KH
rqgðA1S1 þ B1C1 þ AKSK þ BKCK Þ:

ð18Þ

A1; B1; AK and BK obtained from Eqs. (16) are substituted into Eq. (18), hence C1; D1; CK and
DK ; that is, the steady state vibration of y; can be determined.

3. Discrimination of stability and instability

The steady state vibration including subharmonic vibration is determined from Eq. (10) as
shown in the previous section but both stable and unstable steady state vibration are obtained
since the periodic solution is assumed as shown in Eq. (14). Discrimination method for stability
and instability of the steady state vibration is described in this section, where the convolution
integral is used to calculate the transient vibration.

The discrimination can be performed by investigating the transient response from the initial
condition equal to the steady state vibration. If it diverges from the initial steady state vibration
and then converges to other steady state, the initial steady state vibration is regarded as unstable,
otherwise it is discriminated as stable steady state. The transient vibration for a given initial steady
state solution can be calculated by the procedure for transient vibration as already described in
the Section 2.2. Such calculation is expressed as follows:

x

x1

^

xi

8>>><
>>>:

9>>>=
>>>;

¼

h
qp
N 0�1 ? h

qp
0 0 ? 0

0 h
qp
N 0�1 ? h

qp
0 ? 0

^ & & & & ^

0 ? 0 h
qp
N 0�1 ? h

qp
0

2
6664

3
7775

f

^

f

f

^

f

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

Dt

�

h
qq
N�1 ? h

qq
0 0 ? 0

0 h
qq
N�1 ? h

qq
0 ? 0

^ & & & & ^

0 ? 0 h
qq
N�1 ? h

qq
0

2
6664

3
7775

gðxÞ

^

gðxÞ

gðx1Þ

^

gðxiÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

Dt; ð19Þ
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where the equations of the transient vibration follow the bottom row in Eq. (9), and the
convergence of impulse response to become zero is considered, that is, hqp

n ¼ 0 ðnXN 0Þ and hqq
n ¼ 0

(nXN).
Since x in Eq. (19) is already obtained as steady state solution, the calculation of the transient

vibration starts from x1 of the second row in Eq. (19) and successively the time history response xi

can be calculated by the forward substitution procedure since the diagonal elements of hqq0 are
zero. When A0

1; B0
1; A0

K and B0
K represent magnitude coefficients of sinot, cosot; sin Kot and

cos Kot components of xi; respectively, they are obtained from the following equations:

A0
1 ¼

2

M
ST
1xi; B0

1 ¼
2

M
CT

1xi; A0
K ¼

2

M
ST

Kxi; B0
K ¼

2

M
CT

Kxi: ð20Þ

In the case of subharmonic vibration of order 1=K ; A0
1 and B0

1 are compared with A1 and B1 of the
steady state vibration, hereby it is regarded as stable if the following relationship is satisfied:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA1 � A0
1Þ

2 þ ðB1 � B0
1Þ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ B2
1

q p
1

10
: ð21Þ

Eq. (21) denotes that both the difference between A1 and A0
1 and also the difference between B1

and B0
1 are small. The stability condition in right side of Eq. (21) seems comparatively moderate,

since the difference between the approximate solution of A1 and B1 obtained by the Galerkin
method and the exact solution xi by the transient calculation frequently becomes large. In the case
of the fundamental harmonic vibration, the following condition with AK ; A0

K ; BK and B0
K is

adopted ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAK � A0

K Þ
2 þ ðBK � B0

K Þ
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

K þ B2
K

q p
1

10
: ð22Þ

4. Example for three degree-of-freedom mass–spring system

A numerical example on fundamental harmonic vibration and subharmonic vibration of order 1
3

in three-degree-of-freedom mass–spring system of Fig. 2 is shown. m1 is subjected to sinusoidal
wave force and m2 is supported by a non-linear spring. The property of non-linear spring is

Fig. 2. Three-degree-of-freedom mass–spring system.
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defined as gðxÞ ¼ bx3: The system parameters used in the example are shown in Table 1. The case
K ¼ 3 is illustrated so that the subharmonic vibration of order 1

3
is considered. The number of

division in three periods is set to M ¼ 60: The impulse response of each mass is determined by
modal analysis on free vibration for the corresponding given initial velocity.

Response curves of the fundamental harmonic vibration and the subharmonic vibration of

order 1
3
on m1; m2 and m3 are shown in Fig. 3(a)–(c), respectively. The dotted line denotes

amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

3 þ B2
3

q
and phase tan�1ðB3=A3Þ of the fundamental harmonic vibration, and also

the solid line denotes amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ B2
1

q
and phase tan�1ðB1=A1Þ of the subharmonic vibration.

The amplitude and the phase of the fundamental component in the subharmonic vibration almost
coincide with those of the fundamental harmonic vibration, hence they are omitted in the figures.
There are three solutions for the subharmonic vibration which have the same amplitude, whereas
the phase has difference of 2p=3 rad, respectively. In Fig. 4, the calculation result of m2 using the
convolution integral is compared with the result of the RKG method for equations of motion of
the system shown in Fig. 2, where the amplitude is represented as RMS value. Furthermore,
stability and instability of the steady state vibration are discriminated in Fig. 4. It is found that
both results sufficiently coincide on the stable vibration.

Calculation result of stability analysis for the subharmonic vibration is represented
schematically in Fig. 5. Co-ordinates of A0

1 and B0
1 are the coefficients of sinot and cosot terms

calculated in Eq. (20), and their values on transient vibration are plotted as dotted line in Fig. 5
along with the increase of time. If the steady state vibration is stable, location (A0

1; B0
1) does not

move, while it leaves the steady state point if unstable. However, even if stable, the convergent
point of the transient vibration differs from the stable steady state vibration point obtained by the
convolution integral for the reason as already described in Section 3. The calculation result for the
case 8.29Hz is shown in Fig. 5(a), where the unstable subharmonic vibration of order 1

3
converges

to another stable one. In the case of 9.00Hz which is shown in Fig 5(b), the unstable vibration
converges to the fundamental vibration.

In order to discuss the accuracy of the Galerkin method, Eq. (10) is solved directly by the
Newton–Raphson method (which is called the direct method henceforth) and the result is
compared with that of the Galerkin method. The time history response obtained by the Galerkin
method is given as initial value for x in the direct method. Comparison between both waves of 1

3
order subharmonic vibrations is shown in Fig. 6. For the case 8.70Hz which is shown in Fig. 6(a),
the Galerkin method (dotted line) is slightly different from the direct method (solid line).
However, both the lines almost coincide in Fig. 6(b) of 9.24Hz case. Both waves coincide on most

Table 1

System parameters

Mass (kg) Damping coefficient

(N s/m)

Spring constant

(N/m)

Non-linear spring

constant (N/m3)

Amplitude of

excitation (N)

m1 ¼ 1:0 c1 ¼ 1:0 k1 ¼ 1000 b ¼ 1:0� 108 F ¼ 1:0
m2 ¼ 2:0 c2 ¼ 1:0 k2 ¼ 1000

m3 ¼ 3:0 c3 ¼ 1:0 k3 ¼ 1000

c4 ¼ 1:0 k4 ¼ 1000
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region of the response curve, while the case where both waves do not coincide is limited in the
vicinity of an edge of the subharmonic region. It is considered that the overall system with
localized non-linearity exhibits a weak non-linearity, although the localized non-linearity is
strong. Therefore, valid solution of Eq. (10) can be determined by the Galerkin method with
assumption of the simple solution such as Eq. (14).

5. Conclusions

In this paper, the analytical method of steady state vibration using convolution integral is
proposed for the system with localized non-linearities and it is shown that the non-linear equation

Fig. 3. Response curves. (a) m1; (b) m2; and (c) m3: (y) Fundamental harmonic vibration, (—) 1
3
subharmonic vibration

component.
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Fig. 5. Stability and instability in subharmonic vibration of order 1
3
: (a) 8.29Hz and (b) 9.00Hz. (y) Orbit of transient

vibration, (J) stable vibration, (
) unstable vibration, (") convergent point.

Fig. 4. Comparison with RKG method. (—) Stable vibration by convolution integral, (- - - - - ) unstable vibration by

convolution integral, (J) stable vibration by RKG method.

Y. Iwata et al. / Journal of Sound and Vibration 262 (2003) 11–23 21



formulated by the suggested analytical process can be solved by the Galerkin method.
Subharmonic vibration is also included in the steady state vibration. Furthermore, the stability
of each solution can be discriminated by the transient analysis using the convolution integral.
Numerical example of three-degree-of-freedom mass–spring system is demonstrated and the
following results are obtained. (1) Response curves of the fundamental harmonic vibration and
the subharmonic vibration of order 1

3
can be easily calculated by the present method. (2) Stability

or instability of the steady state vibration can be discriminated by the transient analysis using
convolution integral. (3) The result obtained from the convolution integral coincides well with the
result by the Runge–Kutta–Gill method. Therefore, the present method is efficient for the steady
state vibration analysis of non-linear system with localized non-linearities.
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